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ABSTRACT: We consider stability of inviscid, incompressible,
hydromagnetic swirling flows. We obtained supremum for the growth
rates. Growth rate has been illustrated with three standard examples.
Growth rate depends up on vorticity function, velocity profile and wave

number. Furthermore, we obtained upper and lower bound for neutral
phase speed. Also, we derived an instability regions depending on
Rayleigh-Synge-Michael discriminant, velocity profile and radii.
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1. INTRODUCTION

We consider hydromagnetic coaxial flows which is
inviscid and incompressible. When magnetic parameter
becomes zero, it leads to Circular Rayleigh problem.
Batchelor & Gill (1962) [cf. 1] obtained a condition for
instability. Batchelor & Gill (1962) [cf. 1] obtained a
semi-circle instability region. Anil & Subbiah (2010)
[cf. 6] obtained bounds for neutral phase speed. Anil &
Subbiah (2010) [cf. 6] obtained sufficient condition for
stability. Pavithra & Subbiah (2021) [cf. 7] derived
parabolic instability regions under some condition.
Chandrashekhar et al (2022) [cf. 3] obtained instability
region that intersect with Batchelor & Gill semi-circle
under certain aproximation. Chandrashekhar et al
(2023) [cf. 4] obtained a condition for stability and
obtained instability which intersect with Batchelor &
Gill semicircle.

For hydromagnetic swirling flows Sasakura (1984) [cf.
10] obtained a condition for stability. Sasakura (1984)
[cf. 10] derived a Semi-circle region which depends on
Richardson number. Prakash & Subbiah (2021) [cf. 8]
derived instability regions under conditions. Anil &

Subbiah (2010) [cf. 6] obtained a semielliptical region
under condition that minimum curvature should be
positive. Prakash & Subbiah (2021) [cf. 8] obtained
estimate for growth rate. Chandrashekhar et al (2023)
[cf. 5] obtained a condition for wave number for
stability.

In this paper, we derived supremum estimate for
growth rates. We obtained upper and lower bound for
neutral phase speed. Also, we derived instability regions
which depends on basic velocity profile, minimum
Richardson number, curvature and Wave number.

2. HETEROGENEOUS STABILITY EQUATION

The heterogeneous the differential equation is given
by (see [10, 11])
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with boundary conditions
u(R)=0=u(R,).

Where k is the wave number, C complex eigen

@)

value, Rl, R2 are the radial positions of the
cylindrical walls,

D(r2q, ) 2
:—po (r3 0) +(Dp0)rQ02—ryD(%] is

the Rayleigh-Synge-Michael discriminant,
Q, = v angular velocity and £¢ magnetic
r

permeability.

3. GROWTH RATE

3.1 Theorem The upper bound for growth rate is
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Proof:  Multiplying (1) by rDLMJ
r

integrating over (Rl, Rz) and applying (2), we

have
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From (1), considering complex conjugate, we have
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Sub. (4) in (3), equating real parts, we get
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Multiplying eq. (1) by (ru*), integrating, using (2)
and equating real parts, we have

p, DW
T M dr+k2T r|u|2dr+TrD[ Or j(W_Q)r|u|2dr
! Po » ! Po ! |W ~ C|2
Ry (W —c ) ¢’
—J' [( )4 ]r|u|2dr=0. (6)
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Multiplying (6) by k* and adding (5), we have
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In equation (7), the first two terms are non-negative,

dropping them, we get
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R R D[""?W)(vv_cr)
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Using triangular inequalities
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and C, < {%} we have
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3.1 Example
LetW=r,re¢ [1,2]and w(r)=r.

After calculations we get  KC; < 2.08 for p, =1.
3.2 Example

Let W = sinr, re [1,2] and w(r)=r.

After calculations we get  KC; < 1.42 for p, =1.
3.3 Example

Let W = 4r(r-1),re [1,2] and w(r)=r.
ke, < 3.34 for p, =1.

After calculations we get

3.2 Theorem The upper bound for growth rate is
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Proof:
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In equation (7), applying Rayleigh-Ritz
inequality, we get

R 7"
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3.4 Example Let W =, re[12] and y(r)=r.

After calculations we get
2.08

1
L4+7Z—2+1 )
4k*  K?

3.5Example Let W = sinr, re[1,2] and y(r)=r.

ke, < for p, =1.

After calculations we get
1.42
ke <

i 1
P n
—+—+1

{4k4 k?

3.6 Example Let W = 4r(r—1), re [1,2]

for Oy = L
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and y(r)=r.
After calculations we get

ke < 3.34

kc;

ke

Figure 3.1: K VS KC, (Growth rates for various

velocity profiles)

4. BOUNDS FOR NEUTRAL PHASE SPEED

4.1 Theorem The upper and lower bound of neutral
phase speed is

2| o
r

Multiplying (1) by (ru*), integrating between R1

<c<W

r max *

|:elwmin -

min

Proof:

and R2 , using (2) and taking imaginary parts,

we have .

ol T D(p‘)DW]M —c|2 -2y (W —c,)
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For real eigen values, C = C,, we have
rD[M]Cg _Z[D[M]rw —chr
r r
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J{rD[MJWZ —2ww} =0.
r
Solving for C, , we get

2ly....
r D('OOW)
.

5. INSTABILITY REGION

<c <W

r max *

I:zl\Nmin -

min

Theorem 5.1: The range of complex eigen value
(c,, ¢) is given by

Ewmax +Wminj 2 2 (Wmax _Wmin ]2
C—|——— + G | —
2 2

Jin |DW|
> .

B 2IDW . Zin + I+ 2|DW| | oo [Jm - k2]
Proof:

min

To prove the theorem, we adopt the method of
Parthi & Nath (1991) [cf. 9].

Using u=(W —c)G in (1) and (2), we have

D(r6)

D{(W—C)Zp0 }—kZpO(W—C)ZG-H//G—O,

(8)

with boundary conditions

G(R)=0=G(R)). ©)
Multiplying (8) by (rG*), integrating between R; and
R, applying (9), we get

Rf(w ~c)’ po [—'D(:G)r +k°r|G|* }dr

R

Ry
—'fz,//|G|2 rdr =0 (10)
R
u=(W-c)G, implies
u
G = ’
(W —C) (1)
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Substituting (11), (12) in (10) and using Cachy-
Schwartz inequality, we get
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(13) can be written as
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B® = [ p,[DW['[u[" ra, (14)
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Solving for D and taking power 2 on both sides, we

have
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Sub. (14), (15), (16) in the above equation, we get
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Sub. (17) in (18), we get
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From Sasakura (1984) [cf. 10], we have
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Sub. (20) and (21) in (22) , we have
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5.2 Theorem The range of complex eigen value

mln
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(c,. ¢) is given by
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Using (16) and (19), we get
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Sub. (22), (23) in (21), we get
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6. CONCLUSION

R2
And Ipowr|G|2 dr >
Ry

In this paper, we study inviscid, incompressible,
hydromagnetic swirling coaxial flows between rotating
cylinders. We obtained upper bound for the growth rates
of an unstable mode. Growth rate has been illustrated
with three standard examples. Growth rate depends up
on vorticity function, velocity profile and wave number.
Graph shows that among the three standard examples
Sinusoidal wave is the sharper among the other two
waves. Furthermore, we obtained lower and upper
bound for neutral phase velocity. We derived range of
complex phase speed for growing perturbations. Also,
we derived an instability regions depending on
Rayleigh-Synge-Michael discriminant, velocity profile
and radii. Solution of the heterogeneous equation for
Couette flow model will be communicated later.
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